DatasheetQ Logo
Electronic component search and free download site.
Transistors,MosFET ,Diode,Integrated circuits

M27256-2F6 View Datasheet(PDF) - STMicroelectronics

Part Name
Description
Manufacturer
M27256-2F6
ST-Microelectronics
STMicroelectronics ST-Microelectronics
M27256-2F6 Datasheet PDF : 10 Pages
1 2 3 4 5 6 7 8 9 10
M27256
DEVICE OPERATION (cont’d)
For the most efficient use of these two control lines,
E should be decoded and used as the primary
device selecting function, while G should be made
a common connection to all devices in the array
and connected to the READ line from the system
control bus.
This ensures that all deselected memory devices
are in their low power standby mode and that the
output pins are only active when data is required
from a particular memory device.
System Considerations
The power switching characteristics of fast
EPROMs require careful decoupling of the devices.
The supply current, ICC, has three segments that
are of interest to the system designer : the standby
current level, the active current level, and transient
current peaks that are produced by the falling and
rising edges of E. The magnitude of the transient
current peaks is dependent on the capacitive and
inductive loading of the device at the output. The
associated transient voltage peaks can be sup-
pressed by complying with the two line output
control and by properly selected decoupling ca-
pacitors. It is recommended that a 1µF ceramic
capacitor be used on every device between VCC
and VSS. This should be a high frequency capacitor
of low inherent inductance and should be placed
as close to the device as possible. In addition, a
4.7µF bulk electrolytic capacitors should be used
between VCC and VSS for every eight devices. The
bulk capacitor should be located near the power
supply connection point. The purpose of the bulk
capacitor is to overcome the voltage drop caused
by the inductive effects of PCB traces.
Programmain
When delivered, (and after each erasure for UV
EPROM), all bits of the M27256 are in the “1" state.
Data is introduced by selectively programming ”0s"
into the desired bit locations. Although only “0s” will
be programmed, both “1s” and “0s” can be present
in the data word. The only way to change a “0" to
a ”1" is by ultraviolet light erasure. The M27256 is
in the programming mode when VPP input is at
12.5V and E is at TTL low. The data to be pro-
grammed is applied 8 bits in parallel to the data
output pins. The levels required for the address and
data inputs are TTL.
Fast Programming Algorithm
Fast Programming Algorithm rapidly programs
M27256 EPROMs using an efficient and reliable
method suited to the production programming en-
vironment. Programming reliability is also ensured
as the incremental program margin of each byte is
continually monitored to determine when it has
been successfully programmed. A flowchart of the
M27256 Fast Programming Algorithm is shown on
the Flowchart. The Fast Programming Algorithm
utilizes two different pulse types : initial and over-
program. The duration of the initial E pulse(s) is
1ms, which will then be followed by a longer over-
program pulse of length 3ms by n (n is equal to the
number of the initial one millisecond pulses applied
Table 3. Operating Modes
Mode
E
G
A9
VPP
Q0 - Q7
Read
VIL
VIL
X
VCC
Data Out
Output Disable
VIL
VIH
X
VCC
Hi-Z
Program
VIL Pulse
VIH
X
VPP
Data In
Verify
VIH
VIL
X
VPP
Data Out
Optional Verify
VIL
VIL
X
VPP
Data Out
Program Inhibit
VIH
VIH
X
VPP
Hi-Z
Standby
VIH
X
X
VCC
Hi-Z
Electronic Signature
VIL
VIL
VID
VCC
Codes
Note: X = VIH or VIL, VID = 12V ± 0.5%.
Table 4. Electronic Signature
Identifier
A0
Q7
Q6
Q5
Q4
Q3
Q2
Q1
Q0 Hex Data
Manufacturer’s Code VIL
0
0
1
0
0
0
0
0
20h
Device Code
VIH
0
0
0
0
0
1
0
0
04h
3/10
 

Share Link: 

datasheetq.com  [ Privacy Policy ]Request Datasheet ] [ Contact Us ]