DatasheetQ Logo
Electronic component search and free download site.
Transistors,MosFET ,Diode,Integrated circuits

ADF4360-1 View Datasheet(PDF) - Analog Devices

Part Name
Description
Manufacturer
ADF4360-1
ADI
Analog Devices ADI
ADF4360-1 Datasheet PDF : 24 Pages
1 2 3 4 5 6 7 8 9 10 Next Last
ADF4360-1
MUXOUT AND LOCK DETECT
The output multiplexer on the ADF4360 family allows the user
to access various internal points on the chip. The state of
MUXOUT is controlled by M3, M2, and M1 in the function
latch. The full truth table is shown in Table 7. Figure 13 shows
the MUXOUT section in block diagram form.
Lock Detect
MUXOUT can be programmed for two types of lock detect:
digital and analog. Digital lock detect is active high. When LDP
in the R counter latch is set to 0, digital lock detect is set high
when the phase error on three consecutive phase detector cycles
is less than 15 ns.
With LDP set to 1, five consecutive cycles of less than 15 ns
phase error are required to set the lock detect. It stays set high
until a phase error greater than 25 ns is detected on any subse-
quent PD cycle.
The N-channel open-drain analog lock detect should be operat-
ed with an external pull-up resistor of 10 kΩ nominal. When
lock has been detected, the output will be high with narrow
low-going pulses.
DVDD
ANALOG LOCK DETECT
DIGITAL LOCK DETECT
R COUNTER OUTPUT
N COUNTER OUTPUT
SDOUT
MUX
CONTROL
MUXOUT
DGND
Figure 13. MUXOUT Circuit
INPUT SHIFT REGISTER
The ADF4360 family’s digital section includes a 24-bit input
shift register, a 14-bit R counter, and an 18-bit N counter, com-
prising of a 5-bit A counter and a 13-bit B counter. Data is
clocked into the 24-bit shift register on each rising edge of CLK.
The data is clocked in MSB first. Data is transferred from the
shift register to one of four latches on the rising edge of LE. The
destination latch is determined by the state of the two control
bits (C2, C1) in the shift register. The two LSBs are DB1 and
DB0, as shown in Figure 2.
The truth table for these bits is shown in Table 5. Table 6 shows
a summary of how the latches are programmed. Note that the
test mode latch is used for factory testing and should not be
programmed by the user.
Data Sheet
Table 5. C2 and C1 Truth Table
Control Bits
C2
C1
Data Latch
0
0
Control Latch
0
1
R Counter
1
0
N Counter (A and B)
1
1
Test Mode Latch
VCO
The VCO core in the ADF4360 family uses eight overlapping
bands, as shown in Figure 14, to allow a wide frequency range
to be covered without a large VCO sensitivity (KV) and resultant
poor phase noise and spurious performance.
The correct band is chosen automatically by the band select
logic at power-up or whenever the N counter latch is updated. It
is important that the correct write sequence be followed at pow-
er-up. This sequence is
1. R counter latch
2. Control latch
3. N counter latch
During band select, which takes five PFD cycles, the VCO VTUNE
is disconnected from the output of the loop filter and connected
to an internal reference voltage.
3.0
2.8
2.6
2.4
2.2
2.0
1.8
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
FREQUENCY (MHz)
Figure 14. Frequency vs. VTUNE, ADF4360-1
The R counter output is used as the clock for the band select
logic and should not exceed 1 MHz. A programmable divider is
provided at the R counter input to allow division by 1, 2, 4, or 8
and is controlled by Bits BSC1 and BSC2 in the R counter latch.
Where the required PFD frequency exceeds 1 MHz, the divide
ratio should be set to allow enough time for correct band
selection.
Rev. C | Page 10 of 24
 

Share Link: 

datasheetq.com  [ Privacy Policy ]Request Datasheet ] [ Contact Us ]