Electronic component search and free download site.
Transistors,MosFET ,Diode,Integrated circuits

T0P243Y Просмотр технического описания (PDF) - Power Integrations, Inc

Номер в каталогеКомпоненты Описаниепроизводитель
T0P243Y TOPSwitch-GX Family Extended Power, Design Flexible, EcoSmart, Integrated Off-line Switcher Power-Integrations
Power Integrations, Inc Power-Integrations
T0P243Y Datasheet PDF : 52 Pages
1 2 3 4 5 6 7 8 9 10 Next Last
TOP242-250
required can be used to take advantage of the lower RDS(ON) for
higher efficiency/smaller heat sinking requirements. With
a second resistor connected between the EXTERNAL
CURRENT LIMIT (X) pin (Y, R or F package) or MULTI-
FUNCTION (M) pin (P or G package) and the rectified DC
high voltage bus, the current limit is reduced with increasing
line voltage, allowing a true power limiting operation against
line variation to be implemented. When using an RCD clamp,
this power limiting technique reduces maximum clamp
voltage at high line. This allows for higher reflected voltage
designs as well as reducing clamp dissipation.
The leading edge blanking circuit inhibits the current limit
comparator for a short time after the output MOSFET is turned
on. The leading edge blanking time has been set so that, if a
power supply is designed properly, current spikes caused by
primary-side capacitances and secondary-side rectifier reverse
recovery time should not cause premature termination of the
switching pulse.
The current limit is lower for a short period after the leading
edge blanking time as shown in Figure 52. This is due to
dynamic characteristics of the MOSFET. To avoid triggering
the current limit in normal operation, the drain current waveform
should stay within the envelope shown.
Line Under-Voltage Detection (UV)
At power up, UV keeps TOPSwitch-GX off until the input line
voltage reaches the under-voltage threshold. At power down,
UV prevents auto-restart attempts after the output goes out
of regulation. This eliminates power down glitches caused
by slow discharge of the large input storage capacitor present
in applications such as standby supplies. A single resistor
connected from the LINE-SENSE pin (Y, R or F package) or
MULTI-FUNCTION pin (P or G package) to the rectified DC
high voltage bus sets UV threshold during power up. Once the
power supply is successfully turned on, the UV threshold is
lowered to 40% of the initial UV threshold to allow extended
input voltage operating range (UV low threshold). If the UV
low threshold is reached during operation without the power
supply losing regulation, the device will turn off and stay off
until UV (high threshold) has been reached again. If the power
supply loses regulation before reaching the UV low threshold,
the device will enter auto-restart. At the end of each auto-
restart cycle (S7), the UV comparator is enabled. If the UV
high threshold is not exceeded the MOSFET will be disabled
during the next cycle (see Figure 8). The UV feature can
be disabled independent of the OV feature as shown in
Figures 19 and 23.
Line Overvoltage Shutdown (OV)
The same resistor used for UV also sets an overvoltage threshold
which, once exceeded, will force TOPSwitch-GX output into
off-state. The ratio of OV and UV thresholds is preset at 4.5
as can be seen in Figure 11. When the MOSFET is off, the
rectified DC high voltage surge capability is increased to the
voltage rating of the MOSFET (700 V), due to the absence
of the reflected voltage and leakage spikes on the drain. A
small amount of hysteresis is provided on the OV threshold to
prevent noise triggering. The OV feature can be disabled
independent of the UV feature as shown in Figures 18 and 32.
Line Feed-Forward with DCMAX Reduction
The same resistor used for UV and OV also implements line
voltage feed-forward, which minimizes output line ripple and
reduces power supply output sensitivity to line transients.
This feed-forward operation is illustrated in Figure 7 by the
different values of IL(Y, R or F package) or IM (P or G package).
Note that for the same CONTROL pin current, higher line
voltage results in smaller operating duty cycle. As an added
Oscillator
(SAW)
DMAX
Enable from
X, L or M Pin (STOP)
Figure 10. Synchronization Timing Diagram.
8
M
12/04
Time
PI-2637-060600
Direct download click here

 

Share Link : 
All Rights Reserved© datasheetq.com 2015 - 2019  ] [ Privacy Policy ] [ Request Datasheet  ] [ Contact Us ]