DatasheetQ Logo
Electronic component search and free download site.
Transistors,MosFET ,Diode,Integrated circuits

MBM29F033C View Datasheet(PDF) - Fujitsu

Part Name
Description
Manufacturer
MBM29F033C Datasheet PDF : 46 Pages
First Prev 11 12 13 14 15 16 17 18 19 20 Next Last
MBM29F033C-70/-90/-12
Chip Erase
Chip erase is a six bus cycle operation. There are two “unlock” write cycles. These are followed by writing the
“set-up” command. Two more “unlock” write cycles are then followed by the chip erase command.
Chip erase does not require the user to program the device prior to erase. Upon executing the Embedded EraseTM
Algorithm command sequence the device will automatically program and verify the entire memory for an all zero
data pattern prior to electrical erase. The system is not required to provide any controls or timings during these
operations.
The automatic erase begins on the rising edge of the last WE pulse in the command sequence and terminates
when the data on DQ7 is “1” (See Write Operation Status section.) at which time the device returns to read the
mode.
Figure 16 illustrates the Embedded EraseTM Algorithm using typical command strings and bus operations.
Sector Erase
Sector erase is a six bus cycle operation. There are two “unlock” write cycles. These are followed by writing the
“set-up” command. Two more “unlock” write cycles are then followed by the sector erase command. The sector
address (any address location within the desired sector) is latched on the falling edge of WE, while the command
(Data = 30H) is latched on the rising edge of WE. After time-out of 50 µs from the rising edge of the last sector
erase command, the sector erase operation will begin.
Multiple sectors may be erased concurrently by writing the six bus cycle operations on Table 6. This sequence
is followed with writes of the Sector Erase command to addresses in other sectors desired to be concurrently
erased. The time between writes must be less than 50 µs otherwise that command will not be accepted and
erasure will start. It is recommended that processor interrupts be disabled during this time to guarantee this
condition. The interrupts can be re-enabled after the last Sector Erase command is written. A time-out of 50 µs
from the rising edge of the last WE will initiate the execution of the Sector Erase command(s). If another falling
edge of the WE occurs within the 50 µs time-out window the timer is reset. (Monitor DQ3 to determine if the
sector erase timer window is still open, see section DQ3, Sector Erase Timer.) Any command other than Sector
Erase or Erase Suspend during this time-out period will reset the device to the read mode, ignoring the previous
command string. Resetting the device once execution has begun will corrupt the data in that sector. In that case,
restart the erase on those sectors and allow them to complete. (Refer to the Write Operation Status section for
DQ3, Sector Erase Timer operation.) Loading the sector erase buffer may be done in any sequence and with
any number of sectors (0 to 63).
Sector erase does not require the user to program the device prior to erase. The device automatically programs
all memory locations in the sector(s) to be erased prior to electrical erase. When erasing a sector or sectors the
remaining unselected sectors are not affected. The system is not required to provide any controls or timings
during these operations.
The automatic sector erase begins after the 50 µs time out from the rising edge of the WE pulse for the last
sector erase command pulse and terminates when the data on DQ7 is “1” (See Write Operation Status section.)
at which time the device returns to the read mode. Data polling must be performed at an address within any of
the sectors being erased.
Figure 16 illustrates the Embedded EraseTM Algorithm using typical command strings and bus operations.
17
 

Share Link: 

datasheetq.com  [ Privacy Policy ]Request Datasheet ] [ Contact Us ]