DatasheetQ Logo
Electronic component search and free download site.
Transistors,MosFET ,Diode,Integrated circuits

ADP121-2.8-EVALZ View Datasheet(PDF) - Analog Devices

Part Name
Description
Manufacturer
ADP121-2.8-EVALZ Datasheet PDF : 20 Pages
1 2 3 4 5 6 7 8 9 10 Next Last
ABSOLUTE MAXIMUM RATINGS
Table 2.
Parameter
VIN to GND
VOUT to GND
EN to GND
Storage Temperature Range
Operating Junction Temperature Range
Soldering Conditions
Rating
−0.3 V to +6 V
−0.3 V to VIN
−0.3 V to +6 V
−65°C to +150°C
−40°C to +125°C
JEDEC J-STD-020
Stresses above those listed under Absolute Maximum Ratings
may cause permanent damage to the device. This is a stress
rating only; functional operation of the device at these or any
other conditions above those indicated in the operational
section of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect
device reliability.
THERMAL DATA
Absolute maximum ratings apply individually only, not in
combination. The ADP121 can be damaged when the junction
temperature limits are exceeded. Monitoring the ambient
temperature does not guarantee that TJ is within the specified
temperature limits. In applications with high power dissipation
and poor thermal resistance, the maximum ambient temperature
may have to be derated. In applications with moderate power
dissipation and low PCB thermal resistance, the maximum
ambient temperature can exceed the maximum limit as long
as the junction temperature is within specification limits. The
junction temperature (TJ) of the device is dependent on the
ambient temperature (TA), the power dissipation of the device
(PD), and the junction-to-ambient thermal resistance of the
package (θJA). TJ is calculated from
TA and PD using the following formula:
TJ = TA + (PD × θJA)
Junction-to-ambient thermal resistance, θJA, is based on
modeling and calculation using a four-layer board. The
junction-to-ambient thermal resistance is highly dependent
on the application and board layout. In applications where high
maximum power dissipation exists, close attention to thermal
board design is required. The value of θJA may vary, depending
ADP121
on PCB material, layout, and environmental conditions. The
specified values of θJA are based on a 4-layer, 4” × 3”, circuit
board. Refer to JESD 51-7 and JESD 51-9 for detailed
information on the board construction. For additional
information, see AN-617 Application Note, MicroCSPTM Wafer
Level Chip Scale Package.
ΨJB is the junction-to-board thermal characterization parameter
measured in °C/W. ΨJB is based on modeling and calculation
using a four-layer board. The JESD51-12 Guidelines for Reporting
and Using Package Thermal Information states that thermal
characterization parameters are not the same as thermal
resistances. ΨJB measures the component power flowing
through multiple thermal paths rather than a single path as in
thermal resistance, θJB. Therefore, ΨJB thermal paths include
convection from the top of the package as well as radiation
from the package, factors that make ΨJB more useful in real-
world applications. Maximum TJ is calculated from the board
temperature (TB) and PD using the following formula:
TJ = TB + (PD × ΨJB)
Refer to JESD51-8 and JESD51-12 for more detailed
information about ΨJB.
THERMAL RESISTANCE
θJA and ΨJB are specified for the worst-case conditions, that is, a
device soldered in a circuit board for surface-mount packages.
Table 3.
Package Type
5-Lead TSOT
4-Ball 0.4 mm Pitch WLCSP
θJA
ΨJB Unit
170 43 °C/W
260 58 °C/W
ESD CAUTION
Rev. 0 | Page 5 of 20
 

Share Link: 

datasheetq.com  [ Privacy Policy ]Request Datasheet ] [ Contact Us ]