DatasheetQ Logo
Electronic component search and free download site.
Transistors,MosFET ,Diode,Integrated circuits

ADF4351BCPZ View Datasheet(PDF) - Analog Devices

Part Name
Description
Manufacturer
ADF4351BCPZ
ADI
Analog Devices ADI
ADF4351BCPZ Datasheet PDF : 28 Pages
First Prev 11 12 13 14 15 16 17 18 19 20 Next Last
Data Sheet
ADF4351
CIRCUIT DESCRIPTION
REFERENCE INPUT SECTION
The reference input stage is shown in Figure 16. The SW1 and
SW2 switches are normally closed. The SW3 switch is normally
open. When power-down is initiated, SW3 is closed, and SW1
and SW2 are opened. In this way, no loading of the REFIN pin
occurs during power-down.
POWER-DOWN
CONTROL
NC 100k
REFIN NC
SW2
SW1
SW3
NO
TO R COUNTER
BUFFER
Figure 16. Reference Input Stage
RF N DIVIDER
The RF N divider allows a division ratio in the PLL feedback
path. The division ratio is determined by the INT, FRAC, and
MOD values, which build up this divider (see Figure 17).
FROM
VCO OUTPUT/
OUTPUT DIVIDERS
RF N DIVIDER
N COUNTER
N = INT + FRAC/MOD
TO PFD
THIRD-ORDER
FRACTIONAL
INTERPOLATOR
INT
VALUE
FRAC
VALUE
MOD
VALUE
The PFD frequency (fPFD) equation is
fPFD = REFIN × [(1 + D)/(R × (1 + T))]
(2)
where:
REFIN is the reference input frequency.
D is the REFIN doubler bit (0 or 1).
R is the preset divide ratio of the binary 10-bit programmable
reference counter (1 to 1023).
T is the REFIN divide-by-2 bit (0 or 1).
Integer-N Mode
If FRAC = 0 and the DB8 (LDF) bit in Register 2 is set to 1, the
synthesizer operates in integer-N mode. The DB8 bit in Register 2
should be set to 1 for integer-N digital lock detect.
R Counter
The 10-bit R counter allows the input reference frequency
(REFIN) to be divided down to produce the reference clock
to the PFD. Division ratios from 1 to 1023 are allowed.
PHASE FREQUENCY DETECTOR (PFD) AND
CHARGE PUMP
The phase frequency detector (PFD) takes inputs from the
R counter and N counter and produces an output proportional
to the phase and frequency difference between them. Figure 18
is a simplified schematic of the phase frequency detector.
HIGH
UP
D1 Q1
U1
+IN
CLR1
Figure 17. RF N Divider
INT, FRAC, MOD, and R Counter Relationship
The INT, FRAC, and MOD values, in conjunction with the
R counter, make it possible to generate output frequencies that
are spaced by fractions of the PFD frequency. For more informa-
tion, see the RF Synthesizer—A Worked Example section.
The RF VCO frequency (RFOUT) equation is
RFOUT = fPFD × (INT + (FRAC/MOD))
(1)
where:
RFOUT is the output frequency of the voltage controlled oscillator
(VCO).
INT is the preset divide ratio of the binary 16-bit counter (23 to
65,535 for the 4/5 prescaler; 75 to 65,535 for the 8/9 prescaler).
FRAC is the numerator of the fractional division (0 to MOD − 1).
MOD is the preset fractional modulus (2 to 4095).
DELAY U3
CHARGE
PUMP
CPOUT
HIGH
–IN
CLR2 DOWN
D2 Q2
U2
Figure 18. PFD Simplified Schematic
The PFD includes a programmable delay element that sets the
width of the antibacklash pulse (ABP). This pulse ensures that
there is no dead zone in the PFD transfer function. Bit DB22 in
Register 3 (R3) is used to set the ABP as follows:
When Bit DB22 is set to 0, the ABP width is programmed to
6 ns, the recommended value for fractional-N applications.
When Bit DB22 is set to 1, the ABP width is programmed to
3 ns, the recommended value for integer-N applications.
For integer-N applications, the in-band phase noise is improved
by enabling the shorter pulse width. The PFD frequency can
operate up to 90 MHz in this mode. To operate with PFD
frequencies higher than 45 MHz, VCO band select must be dis-
abled by setting the phase adjust bit (DB28) to 1 in Register 1.
Rev. 0 | Page 11 of 28
 

Share Link: 

datasheetq.com  [ Privacy Policy ]Request Datasheet ] [ Contact Us ]