DatasheetQ Logo
Electronic component search and free download site.
Transistors,MosFET ,Diode,Integrated circuits

E48SB9R625NRFA View Datasheet(PDF) - Delta Electronics, Inc.

Part Name
Description
Manufacturer
E48SB9R625NRFA Datasheet PDF : 11 Pages
1 2 3 4 5 6 7 8 9 10
DESIGN CONSIDERATIONS
Input Source Impedance
The impedance of the input source connecting to the
DC/DC power modules will interact with the modules and
affect the stability. A low ac-impedance input source is
recommended. If the source inductance is more than a
few µH, we advise adding a 33 to 220µF electrolytic
capacitor (ESR < 0.5 at 100 kHz) mounted close to the
input of the module to improve the stability.
Layout and EMC Considerations
Delta’s DC/DC power modules are designed to operate in
a wide variety of systems and applications. For design
assistance with EMC compliance and related PWB layout
issues, please contact Delta’s technical support team. An
external input filter module is available for easier EMC
compliance design. Application notes to assist
designers in addressing these issues are pending
release.
Soldering and Cleaning Considerations
Post solder cleaning is usually the final board assembly
process before the board or system undergoes electrical
testing. Inadequate cleaning and/or drying may lower the
reliability of a power module and severely affect the
finished circuit board assembly test. Adequate cleaning
and/or drying is especially important for un-encapsulated
and/or open frame type power modules. For assistance on
appropriate soldering and cleaning procedures, please
contact Delta’s technical support team.
Over-Temperature Protection
The over-temperature protection consists of circuitry that
provides protection from thermal damage. If the
temperature exceeds the over-temperature threshold
the module will shut down, and enter in auto-restart
mode or latch mode, which is optional.
For auto-restart mode, the module will monitor the
module temperature after shutdown. Once the
temperature is within the specification, the module will
be auto-restart.
For latch mode, the module will latch off once it
shutdown. The latch is reset by either cycling the input
power or by toggling the on/off signal for one second.
Remote On/Off
The remote on/off feature on the module can be either
negative or positive logic. Negative logic turns the module
on during a logic low and off during a logic high. Positive
logic turns the modules on during a logic high and off
during a logic low.
Remote on/off can be controlled by an external switch
between the on/off terminal and the Vi(-) terminal. The
switch can be an open collector or open drain.
For negative logic if the remote on/off feature is not used,
please short the on/off pin to Vi(-). For positive logic if the
remote on/off feature is not used, please leave the on/off
pin floating.
Vi(+)
Vo(+)
FEATURES DESCRIPTIONS
Over-Current Protection
The modules include an internal output over-current
protection circuit, which will endure current limiting for an
unlimited duration during output overload. If the output
current exceeds the OCP set point, the modules will
automatically shut down, and enter hiccup mode or latch
mode, which is optional.
For hiccup mode, the module will try to restart after
shutdown. If the overload condition still exists, the module
will shut down again. This restart trial will continue until
the overload condition is corrected.
For latch mode, the module will latch off once it shutdown.
The latch is reset by either cycling the input power or by
toggling the on/off signal for one second.
ON/OFF
Vi(-)
Vo(-)
Figure 15: Remote on/off implementation
R
Load
DS_E48SB9R625_01232007
7
 

Share Link: 

datasheetq.com  [ Privacy Policy ]Request Datasheet ] [ Contact Us ]